2017年人工智能就已经列入了国务院的人工智能发展规划中,人工智能将成为推动中国发展的新生科技力量,并在未来扮演着越来越重要的角色,在这一背景下,机器学习会慢慢成为一个程序员必备的底层能力。

为了开始构建机器学习模型(不是机器学习理论研究),你需要的数学知识比你想象的少(至少比你被告知的要少)。如果您有兴趣成为机器学习从业者,那么你不需要很多高级数学知识也可以开始。

在工业领域,在大多数情况下,主要的追求不是发明创造(造轮子)和写报告。企业真正追求的是否能创造商业价值。在大多数时候,尤其刚起步阶段,你会应用“现成”工具就足够了。这时候你会发现,这些工具对数学的要求并没有你想象的那么高。

对于想要了解或从事AI行业工作的小伙伴们来说,能够快速、深入的掌握机器学习相关知识显得尤为重要,小编给大家整理机器学习的学习方法。

 机器学习学习方法

如何去学,或者说如何高效的学以及学习的步骤和侧重点非常重要。

1、切勿掉入书山中,实践理论结合重要

很多人可能会一头扎进书山中埋头苦读,读完一本接着一本最后发现什么都懂点什么又都没懂,这样效率是很低的。在IT界,实践才能学到东西,不要一直看书,可以边看边试试写点代码,实现个小公式,小算法,这样进步快一些。

2、采取并行学习法而非串行

这幅图可以作为学习的基本流程,但是未必需要前面具备才往后进行,可以一边学基础,一边写代码,一边还可以做比赛,这样前期会痛苦一些,但在后面的学习过程中,速度会很快。

3、建立知识框架,修补知识漏洞

上面这幅图是是sklearn的机器学习算法笔记,你可以在学习中去建立类似的笔记,有助于建立起整个学习框架,对于不懂得,再不断从细节去学。

4、找到适合你的课程,跟着从头到尾学

如果你是上班族或者没有专业的老师给你讲这门课,那么报一门适合你的课程从头到尾跟着学就非常重要了,不要过于相信你的自制力,没有人和你一起学,你学了很久也看不到进步,慢慢兴趣就没了,所以找到能从头到尾给你讲的课程也很重要。